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ANALYSIS OF HYPERVELOCITY PERFORATION

OF A VISCO-PLASTIC SOLID INCLUDING THE EFFECTS

OF TARGET-MATERIAL YIELD STRENGTH

By Robert G. Thomson

Langley Research Center

SUMMARY

A visco-plastic flow theory for the solution of hypervelocity perforation

of thin plates has been investigated. A short-time analytical solution of the

governing equation including the effects of yield strength of the target mate-

rial was obtained and expressions were derived for the velocities, displace-

ments# strains, and strain rates present in the target material during hyper-

velocity impact. In addition, pertinent parameters have been varied and a

comparison has been made with the solution in which the yield strength was neg-

lected. The results indicate that the velocities, displacements, and stresses

determined from the present solution are at times markedly different from the

results obtained when the yield strength is neglected. The effects on the radius

of perforation of the plate material when the yield strength is included were

found to be not as significant as those of the solution neglecting target yield

strength and resulted in little variation in the computed perforation radii.

INTRODUCTI ON

A visco-plastic flow theory was first proposed for the hypervelocity per-

foration of thin plates by rigid cylindrical projectiles by F. A. Bakhshiyan in

1948. (See ref. i.) In this analysis a circular cylindrical projectile was

considered to impact upon a thin target plate and the resulting radial visco-

plastic boundary was treated as time dependent. The solution presented, however,

was limited to the special case of an infinite mass projectile. In references 2

and 3 an analytical solution was obtained for a problem similar to that of ref-

erence i except that the yield strength of the target plate was taken to be zero

(that is, the visco-plastic boundary was taken to be at infinity) and the pro-

jectile mass was treated as finite. The yield strength of the target material

was introduced later in this analysis to establish a separation criterion for

perforation. An approximate two-dimensional analysis of the impact problem as

stated in reference 2 is presented in reference 4. This solution indicates

that the radial velocities are about one order of magnitude less than the axial

velocities and thus helps to justify the use of a one-dimensional approach.



An extension of the work presented in references 2 and 3 is presented in

reference 5 in which an attempt is made to include the effects of target mate-

rial yield strength in the governing differential equation and associated

boundary conditions. The results of the analysis are given in finite series

form and a parametric study is presented in which the effects of variations in

the pertinent parameters on the radius of perforation are determined. The

solution as given in reference 5; however; does indicate that for the case of

the infinite mass projectile, the velocity of the projectile decreases slightly

after impact. This result is probably due to the fact that only a finite num-

ber of terms from an infinite series was used.

In the present analysis an analytical solution to the problem of a rigid

projectile of finite mass impacting upon an infinite plate is obtained in which

yield-strength considerations have been included in both the analysis and in

the determination of the separation criterion. The solution obtained in the

present report differs from that reported in reference 5 even though the basic

problem is identical. The present solution agrees in the limiting case when

the yield strength is set equal to zero with the solution presented in refer-

ences 2 and 3 in which yield strength was neglected. In addition, the expres-

sion for velocity will limit, in the case of the infinite mass projectile, to

the condition that the velocity of the projectile remains constant after impact.

The present report also shows how the effects of including yield strength

in the analysis compare with the results obtained for the same conditions when

yield strength _s neglected. Some pertinent parameters such as initial velocity

and mass of the impacting projectile as well as the plate thickness and viscos-

ity are varied in order to study their effects on the displacement, velocity,

strain, and strain-rate distributions, and on the radius of perforation as com-

puted with and without target yield strength.

SYMBOLS

A,B

a

CI

err

err '

erfc

go

coefficients of Bessel functions

radius of projectile

dynamic ultimate yield strain in shear

error function

derivative of error function

complementary error function

initial projectile velocity



h plate thickness

2_ah

H _ 2_a2h_; also used for Hankel function
M

inerfc x

In

Jn

k

K

Kn

MI

M

n,p

r

r

s

Sp

t

t

V

V

nth integral of erfc x (see appendix, eq. (A58))

modified Bessel function of first kind of order n

Bessel function of first kind of order n

dynamic target yield stress in shear

Bingham number_ k a
Vo_

modified Bessel function of second kind of order n

mass of projectile

mass of projectile and plug of plate material of radius

M 1 + _a2hp

integers

radial distance

r
nondimensional radial distance, --a

Laplace transform parameter

Struve function of order p

time

nondimensional time, w--=_t
a2

axial velocity

transform of V

angle in plane of target (see fig. i)

a_
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V o

v__
Vo

_V a

br Vo

w

wY
a2go

bw w

_r aV o

Yn

7

v

P

l-rE

z

Sub scripts :

cr critical

initial velocity of projectile after impact

nondimensional velocity

P

nondimensional shear strain rate

axial displacement

nondimensional displacement

nondimensional shear strain

Bessel function of second kind of order

shear strain, 8w
8r

dynamic coefficient of viscosity

kinematic coefficient of viscosity,
P

mass density of plate material

transverse shear stress

axial coordinate

n

perforation

A dot over a symbol denotes differentiation with respect to time t.

ANALYSIS

Governing Equations

In the present analysis a rigid cylindrical projectile is considered to

impact upon a thin infinite plate. The resulting perforation of the plate by

the projectile is assumed to be a simple shear-plugging perforation in which

only the transverse shear stresses act to resist the inertia of the impacting

projectile. The perforation is also considered to be axially symmetric and the

4



shear stress is taken to be constant through

the thickness of the plate. The resulting

deformations w of the plate are then

represented as functions only of the radial

coordinate r and the time t, both being

independent of the axial coordinate z and

the circumferential coordinate e. (See

fig. l(a).) Hence, by taking the sum of the

forces in the axial direction on a circular

ring element of plate material (see

fig. l(b)), the basic equation of motion

for this simple shear perforation model can
be written as

z
h

(a) Finite rigid projectile

and infinite plate.

_Trz Tr__._zz= ^ 2w
_r + r 8t 2

(i)

The plate material considered herein is

assumed to behave like an incompressible,

visco-plastic Bingham solid in which the

deformation accompanying transverse shearing

commences only after the yield strength of

the material has been reached. (See

ref. 6.) When the value of the transverse

shear stress falls below the yield stress

of the material (or when the rate of defor-

mation becomes equal to zero), visco-

plastic flow ceases and the material is

82w

p _t_ _rdrd@

rzhrd_\s F "_ _ _J i

z

('rz - _rz dr)h(r + dr)d8

(b) Circular ring element with

equilibrium forces.

Figure i.- Geometry and coordi-

nate system of perforation.

assumed to be rigid. The relation between the shear strain rate and shearing

stress for the case of simple shear perforation can be written as (see ref. 6)

= _-Y-_+ ign
Trz 8r 8r/

(2a)

or, since the sign _rw is always negative in this case,

= _-_w - k (2b)
Trz _r

where

dynamic viscosity of target material

k dynamic yield stress in shear of target material

8w _V shear strain rate



and the relations between the velocity V, axial displacement
are

V = 8-Ew
8t

8w

Y = _r

w, and strain F,

Substitution of equation (2b) into equation (i) yields the governing linear

differential equation

1BY 18V ik82v+ = - - (3)
8r 2 r 8r v 8t r

where v is the coefficient of kinematic viscosity. The initial conditions

are taken to be

V = 0 (t = O, r > a) (4)

V = V o (t = O, r _ a) (5)

where V o is the initial velocity of the projectile and plug combination. In

this study V o was determined from the conservation of momentum at the instant

of impact in which the projectile-plug combination is assumed to be rigid and
to act as a unit. Thus

(6)
Vo = go M--

where

go

M I

initial velocity of free projectile

mass of projectile

M = M I + _a2ho

The boundary conditions are

-_k + _SV 8V _ 0
_rr _t

(t > O, r = a) (7)



and

V -_0 (t _->O, r -_) (8)

where

= 2_ah
M

Method of Solution and Resulting Equations

An analytical solution is obtained in the present paper by Laplace trans-

form techniques similar to the approach used in reference 5- The homogeneous

solution can be written directly in terms of modified Bessel functions. The

particular solution, however, is obtained by utilizing Struve functions of order

zero rather than by the method of variation of parameters used in reference 5.

The solution to the governing differential equation (eq. (3)) and its associated

boundary conditions (eqs. (4), (5), (7), and (8)) is discussed in detail in the

appendix. The solutions obtained are "short time" solutions in t corre-

v a2 (see
sponding to values of the transform parameter s > _ or t < _-_v

appendix) resulting from the use of asymptotic expansions in the transformed

state. It is shown in the appendix that the velocity (eq. (A34)), displacement

(eq. (A37)), shear strain (eq. (A36)), and shear strain rate (eq. (A35)) can be

expressed in dimensionless form in terms of a dimensionless radius _ and a
dimensionless time [ as

V = i_ lerf c T-i + 4K(I - H)_i2erfc _-i , 16KH_2i4erfc _ - 1Vo ¢_ 2_ 2_ 2_
L

12_ _-i + 8K(I - E)(_)'/2i3erfc _ ---i + 32KH(-_)5/215erfc _ -_tl1+ R I i erfc 2_ 2_

+ R2 4_i2erfc 7 -_______i+ 16K(I - H)_2i4erfc _ -___i+ 64E_{_3i6erfe _ - I . . _ _K_

f
wv 4_ li2erfc F-i 4K(I - H)_i4erfc _-i 16KH_i6erfc _ - i

a2V'-'_" = _ _ 2g + 2_/'_- + 211_

+ RII2_ i3erfc _---1 + 8K(1- H) (Y) 5/2i5erfc _-_1 +32KH(Y)5/2i7erfc2_ 2_ _-7_1

F
+ R2 _i4erfc T - i

L
-- + 16K(I - H)t--gi6erfc _-i + 64KH_3i8erfc _____h_l. .

2_ 2_J _ 2T

((_- _) _ o) (9)

((_- z) > o) (zo)
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4__ I i 7- i + R3i2erfc _- i

__ erfc 27 2_
--+

+ 4t'_5 + K(I- H)R_i4erfc _ - 1 8(_)3/2_(i- H)R 4 - _±5erfc _- I

+ 6L_ER5i8erfc _ - 1 . . ._ + K__L_

J

+ 32(y)5/2KHR4i7erfc F - i

((_ - _) > o) (ll)

8V a

_r V o

(F-i)2

4Y
F- 1 2_ 4 - K(I- H)_i erfc _ - 1

+ R 3 erfc 2_ + 2_

_ - i + 8(_)3/2EK(I - H)R4 _ KHJi3erf c _ - 1
+ 4_5 + K(I- H)R_i2erfc -_ 2_

+ 16t-J2[K]_R3 + K(I - H)Rs_i4erfc _- I +
T 32(_) 5/2KHR4iSerfc F 1

+ 64T_GiR5i6erfc _ - 1 . . ._ + K_____ ((T-l) _o) (Z2)

where

H

2:_a2hp
T

M = _a2hp + M I

ka
K =

_Vo

-- r
r --

a

8



i i H
R1 = 8 8F

R2 __9__ l
128F2 64F + - +

3 l+H
R3 = 8F 8

l_ + _7_ + HI2" ) _2642" 128 8" + 5 -

R5 = - 45 + _+--L-+ H_T #2)256F3 128T 2 256F Yg -

H 2

2P

and inerfc _ - i is the nth integral of erfc T - i (See eq. (A38).)

It can be seen from these equations that if the yield strength k is

neglected, that is, if K = O, the expressions for velocity, displacement_

shear strain, and shear strain rate reduce to expressions identical to those

presented in reference 3. Also in the case of the infinite mass projectile in

which H = 0 (for M I = _), the expression given in equation (9) for velocity

is shown to reduce to V = V o at _ = i for all values of _.

Typical examples of the radial distributions of strain and strain rate as

expressed in equations (ii) and (12) are shown in figures 2 and 3. Typical

velocity and displacement distributions as given by equations (9) and (i0) are

plotted in subsequent figures (figs. 9 and i0).

Separation Criteria

In order to determine the radius of the plug of plate material which is

sheared (or perforated) from the plate upon impact_ separation criteria were

established. The criteria are based on the assumption that separation of the

projectile and plug of plate material from the plate occurs when the plate

material can no longer transmit shear stress. If the plate material is con-

sidered viscous, it can transmit high shear stress even though visco-plastic

flow is occurring. This condition of high shear stress and visco-plastic flow

exists immediately after impact when the strain rate is at a maximum and the

viscous stress _ is much greater than the yield stress k of the material.

(See eq. (2b).) The plate material is considered to be highly viscous when the

strain rate is greater than k/_ but is considered susceptible to separation

once the strain rate falls below k/_. In other words, the strain-rate

9
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criterion for separation is assumed to be

cr

A second criterion deals with the shear strain of the material which at the

moment of impact is zero and increases thereafter. In order for the plug to

separate from the platej the material not only has to be considered as having a

sufficiently small strain rate _< but also must contain large shear

strains as well. The material is assumed to contain large shear strains when

the shear strain exceeds a certain magnitude. The magnitude chosen in this case

is the dynamic value of the ultimate shear strain of the material. Thus, the
second criterion can be written as

7cr = = C I

r

(14)

where C I is the dynamic ultimate strain in shear. (A value of C I of 0.02

was assumed in this paper for both aluminum and steel.) For a further discus-

sion of these separation conditions, see references 2 and 3.

i0
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V d

r V

t 64 .....

I .0 J ,2 I ,4 I 6 I .8 ;',0 2.2 2.4 2.6 2.8 3.0 3.2 3,4 3,6

Figure 3.- Strain rate as a function of radius for h = 0.2_ inch

(0.635 era); M 1 = 3.56 X lO -6 slug (51.95 mg); _ = 1OO s±ug
ft- sec

o.
_=_oo,ooo_ (_._ __ o.o_6__/o._9 _°1.

The radius of separation of the plug material and the time of separation

can most readily be determined by a graphical procedure. In figure 2 is shown

a typical nondimensional set of curves of strain as a function of radius and

in figure 3 of strain rate as a function of radius for a projectile of mass

3.56 X lO -6 slug (51.95 mg) and initial velocity 3,940 fps (1,201 m/s) impacting

on a i/4 inch (0.635 cm) thick aluminum plate. (Conversion factors for the

units used herein are given in table I.) A plot of the time parameter _ as a

ll



function of _ can now be obtained for critical strain from figure 2 by con-

structing a horizontal line representing the critical strain (eq. (14)) and

determining the intersections with the strain curves. In a similar manner the

critical strain-rate curve of _ as a function of _ can be determined from

figure 3. The radius of perforation and the time of separation are then deter-

mined from the intersection of the critical strain and critical strain-rate

curves as plotted in figure 4. Thus, for this particular case the radius of

perforation and the time of separation are r--p= 1.740 and _ = 0.250,

respectively.

TABLE I.- CONVERSION FACTORS FOR UNITS

Parameter U.S. Customary Unit SI system Conversion factor

(*)

Mass

Velocity

Length

Coefficient of viscosity

Yield strength

Density

slug

fps

inch

ib-sec

ft 2

psi

slug

ft 3

milligram

meters

second

centimeter

newton-see

centimeter 2

kilonewton

centimeter 2

_rams
centimeter3

14.6 × 106

o.9o_8

2.54

0.oo4788

6.895 x 10 -4

0.91958

*Multiply value given in U.S. customary unit by conversion factor to obtain equiv-

&lent value in SI unit.

,2

2,6 3 .O 3.4 3.8

F

Figure 4.- Graphical representation for determining perforation

radius and separation time. h = 0.25 inch (0.635 em);

M1 = 3.56 X 10-6 slug (51.95 rag); _ = lO0 slug {O.4788 Ns _;
ft - s e c \ cm2/

go = 3,940 fps 1,201 _ , p = 5.2 _ 12 6_ •

( kNk = i00,000 psi 68.95 cm2/ a = 0.04688 inch (0.i19 cm).
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Note that four regions are indicated in figure 4. In these regions the

predominant material behavior could be described as containing: large strain

rates and large strain (region I); large strain rates and small strain

(region If); small strain rates and small strain (region III); and small strain

rates and large strain (region IV). 0nly in region IV are both critical compo-

nents of the separation criteria satisfied; therefore, it is assumed that only

in this region does separation occur.

EFFECTS OF TARGET-MATERIAL YIELD STRENGTH

ON PERFORATION RADIUS

Expressions are derived in the appendix and presented in the previous sec-

tion for the velocity, displacement, shear strain, and shear strain rate written

in nondimensional form. These expressions contain pertinent parameters associ-

atedwith the perforation problem such as projectile mass, initial velocity,

target density, viscosity, yield strength, and thickness. Variations in these

pertinent parameters are now investigated to determine their effects on the

perforation radius. Results are obtained, with the aid of electronic computing

machines, for the present solution which includes the effects of yield strength

and for the simplified solution in which yield strength is neglected (that is,

in which K is set equal to zero in eqs. (9), (lO), (ll), and (12)).

Perforation Radius as a Function of Initial Projectile Velocity

Aluminum plate.- In figure 5 is shown the variation in perforation radius

with initial projectile velocity for a 1/4 inch (0.635 cm) thick aluminum plate

being impacted by a 3/64 inch (0.119 cm) radius rigid cylindrical projectile.

The mass of the projectile was taken to be 3.56 X 10-6 slug (51.95 mg),which for

aluminum would correspond to a projectile 0.0642 inch (0.163 cm) long. The

dynamic coefficient of viscosity of the plate is i00 lb-sec (0 4788 N_so_ and the
ft 2 \

dynamic yield strength i00,000 psi t168.95 _T\k_). As can be seen fromCm_/figure 5,

including material yield strength in the analysis has little effect on the per-

foration radius r--p for the range of velocities shown. (The maximum difference

between the case K _ 0 and the case K = 0 is of the order of 5 percent.) A

calculation was made for an initial projectile velocity of 778 fps (237 m/s) and

the projectile did not perforate the plate.

Steel plate.- In figure 6 is shown the variation in perforation radius with

initial projectile velocity for a 0.088 inch (0.2235 cm) thick steel plate being

impacted by a 3/64 inch (0.119 cm) radius rigid cylindrical projectile. The

mass of the projectile was taken to be identical to the mass of the projectile

impacting the aluminum target (3.56 X 10 -6 slug; 51.95 mg). The dynamic coeffi-

cient of viscosity of the steel plate is 300 Ib-sec Ii 4364 N-_I and the dynamic
ft 2 \ _-!

yield strength 200,000 psi I137.9 k__N_. Note that the weight per unit area of
\ cm_!
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H . 67

" [1 i
vares - i : e JCt_._g_

" i

20000
6096)

Figure 5.- Radius of perforation as a function of initial projectile velocity for aluminum

pl_te, h = 0.25 inch (0.655 cm); M I = 3.56 X 10 -6 slug (51.95 mg); # = i00 slug
ft-sec

0.4788 -_-_--;,0 = 5.2 -- .68 ; k = i00,000 psi 8.95 kN ,

.... ft 3

(o.119 c_).

the steel plate is equivalent to the weight per unit area of the aluminum plate.

Thus_ the momentum exchange between the impacting projectile and both the steel

and aluminum plates is identical.

As can be seen from figure 6# including material y{eld strength in the

solution still has little effect on the perforation radius over the range of

velocities shown. (The maximum difference between the case K _ 0 and the

case K = 0 is of the order of 5 percent.) Although steel has a higher yield

strength than aluminum, the critical strain rat% which depends on viscosity as

well as yield strength_ is smaller. Hence 3 the perforation radius in steel is

larger than in aluminum (for the same initial velocities) and separation occurs

after a greater passage of time. At the lower velocity range the prevention of

perforation is again noted as for the aluminum target since for a specific

14



initial projectile velocity of 526 fps (160 m/s) the res_Its of the analysis

indicated no perforation.

i .%

2.0

r

FJ_niI'e6.- Radius of perforation as a function of initial 10roJectile velocity for steel
. slug

plate, h = 0.058 im'h (0.2255 cm); MI = 3._0 X 10 -6 slug (51.95 m_); _ = 300 ft-sec

kN ;
(1"496 Ns _; r = 14"765 slug (7"61 cm_)_ k = 200_000 psi (157"90c-_)em2] i-_t_-

a = 0.04688 inch (0.119 cm).

The effect of including yield strength in the analysis when both solutions

(K = 0 and K _ O) yield perforations has been shown to be insignificant. How-

ever_ in the lower velocity ranges the simplified solution for K = 0 may indi-

cate a perforation whereas the present solution for K _ 0 does not. This

result suggests that the present solution be applied in the case of the determi-

nation of minimum plate thicknesses necessary to prevent perforation.

Perforation Radius as a Function of Projectile Mass

and/or Plate Thickness

In figure 7 is shown the effect of varying the thickness of the aluminum

plate or the projectile mass on the nondimensional perforation radius. The

specific initial velocity of the aluminum projectile was taken to be 20,000 fps

(6,096 m/s) and the plate thickness was varied from 0.25 inch (0.635 cm) to

15



2.50 inch (6.35 cm), all other parameters being held constant. The increase in

plate thickness decreases the perforation radius and time required for separa-

tion. Including yield strength in the analysis has little effect on the calcu-

lated perforation radii (maximum variation in calculated radii is of the order of

4 percent). Figure 7 also represents the effect of decreasing the mass of the

projectile on the nondimensional perforation radius. If the mass of the aluminum

projectile is decreased from 3.56 X lO -6 slug (51.95 mg) to 0.356 X lO -6 slug

(5.195 mg) (the radius remaining constant) instead of the plate thickness being

increased from 0.25 inch (0.635 cm) to 2.50 inch (6.35 cm), the calculated re-

sults would have identical plots. This result is due to the fact that the nondi-

mensional parameter H _atio of twice the mass of the plug directly beneath the
\

projectile to the sum of the mass of the projectile and the mass of the self-same

plug _ _ changes in the same proportion with a decrease in M 1 or an

3.00

2.50

2.00

C _i

.'5 .50 2.00 2_50

(0635{i "54 3,4 ' 5.08 '6.35_

n, n._cmj

3.00

7.62)
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i i
3.56 I,IB ,89 ,593 .445 .356 .297 xLc5 {_

(51.95)(25.98) tl2.991 _8.65i (6.491 (5.t95} {4.335)

Ml._lug (mgl

Figure 7-- Effect of variation in aluminum plate thickness

and/or projectile mass on perforation radius.

= (o (ft-sec cm2) go = 20,000 fps 6,096 m .

0 : 5.2 ft3slug .68 g ; k = lO0,O00 psi .95 cm2/

a = 0.0&688 inch (0.119 ore).



increase in h. The perforation radius and separation time are thus seen to

decrease with decreasing projectile mass. It is evident from figure 7 that the

effects of yield strength need not be considered in the calculation of perfora-

tion radii.

Perforation Radius as a Function of Coefficient

of Dynamic Viscosity

The variation in nondimensional perforation radii due to changes in the

dynamic coefficient of viscosity is shown in figure 8 for the 3.56 × 10 -6 slug

(51.95 mg) projectile impacting on the aluminum plate. A specific velocity of

3,940 fps (1,201 m/s) was chosen and the dynamic coefficient of viscosity was

3,00

Fp I .50

I .00

]

I O0 150 200

(0.4788) (0.7182} _0.9576)

F' ft-- 2

250 300

(I.[97) ( I .436)

Figure 8.- Effect of variation in coefficient of dynamic viscosity on perforation radius.

h : 0.25 inch (0.635 cm); M 1 = 3.56 X 10 -6 slug (51.95 rag); go : 3,9 bO fps (1,201 _);

J

!

P = 5 .2 slug (2.68 k = i00,000 psi 68.95 ; a :_ 0.04688 inch (0.119 era).

ft 3 cm 3
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varied from 0 to 200 ib-sec (0.958 Ns I; all other parameters remained constant
ft 2 _ cm2

J

and are given in figure 8. Although calculations were made for larger values of

_, it was found that the dimensionless separation times were continuing to

increase above [ = 1/2; and thus these results were not considered valid

because of the "short time" nature of the solution. (See appendix.)

The variation in the coefficient of viscosity is shown to produce a very

large variation in perforation radii and indicates a definite need for better

evaluation of this coefficient. The inclusion of the yield strength in the

analysis exhibits results for perforation radii as much as i0 percent lower

than the solution neglecting yield strength. However, this variation can be

considered to be negligible in comparison with the variations of _p because of

the lack of accurate knowledge of the coefficient of viscosity (in the present

state of the art) at these high impact velocities.

EFFECTS OF TARGET-MATERIAL YIELD STRENGTH ON

VELOCITIES, DISPLAC_4ENTS, AND STRESSES

In the previous sections it has been shown that the results for perforation

radii obtained with the inclusion of yield strength in the analysis differed

little from the results obtained when the yield strength was neglected. The

calculations of the strain and strain rates are little affected by the inclu-

sion of yield-strength terms and result in similar curves when plotted as a

function of plate radii. The velocities, displacements, and stresses of the

solution containing yield strength, however, are at times markedly different

from the solution in which yield strength is neglected.

Velocities and Displacements

In figure 9 are shown the velocities and displacements plotted as a func-

tion of the plate radius for various times after impact. The pertinent param-

eters of the problem are those of the aluminum plate discussed earlier and are

given in figure 9. (The strain and strain-rate distributions are given in

figures 2 and 3 for K _ 0.) The specific initial velocity of the projectile

is taken to be 3,940 fps (1,201 m/s). In figures 9(a) and 9(c) the results are

shown for the solution neglecting yield strength whereas figures 9(b) and 9(d)

show the results obtained by including yield strength. It can be seen that the

two solutions begin to differ immediately and increase in variance with

increasing time. The solution neglecting yield strength possesses no rigid

region since _V/_r never reaches zero (except at infinity), and the material

remains visco-plastic everywhere. Note also, since 8V/Sr is never zero,

Trz is always greater than the yield stress (which in this case is zero) and

equation (2b) for Trz is valid everywhere. The solution including yield

strength, however, develops rigid and visco-plastic regions which are time

dependent. A Bingham solid becomes rigid when _V/Sr vanishes (see ref. 6,

p. 138) and 8V/Sr vanishes at finite distances from the point of impact when

18
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(a) Velocity as a function of radius for K = 0.

Figure 9.- Velocity and displacement as a function of radius for

K = 0 and K = 0.351. h = 0.2_ inch (0.635 cm);

M 1 = 3.56 x 10-6 slug (51.95 rag); _ = i00 slug {0._788 N_____;
ft-sec \ cm2/

go = 3_91'0 fps 1,201 _ ; O = 5.2 2.68 ;
ft 3 cm3

k=lOO,OOOpsiC68.9_k_= o._ inch(Oll9cml
\

4.0
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the yield strength is included in the analysis. The second boundary condition

(eq. (8)) states that as r _, V _0. Eence, when bV/br vanishes at a

point the velocity must remain constant, and for the condition at infinity to

be satisfied this constant must be zero; therefore, the rigid region possesses

zero velocity. Consequently, it is concluded that when either the velocity or

8V/Sr vanishes, the material is considered rigid.

Comparison of the velocities with and without yield strength (figs. 9(a)

and 9(b)) indicates a much greater velocity decrease with time when the yield

strength is included. Similarly, the displacements (figs. 9(c) and 9(d)) cal-

culated from an analysis including yield strength are much less than those

obtained when yield strength is neglected.
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Figure lO.- Velocity and displacement as a func-

tion of radius for K = 0 and K = 2.226.

h = 2.5 inch (6,35 cm); M1 = 3.56 X l0 -6 slug

(51.95 mg)j _ = i00 slug 0.4788 ;
ft-sec

go = 3_940 fps (1,201 _)" p = 5.2 slug
' ft_

(2.68 c_); k = i00,000 psi (68.95 k:L_Z 2);
a = 0.04688 inch (0.119 cm).
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If the projectile mass is decreased to one-tenth its value (or the plate

thickness is increased tenfold) and the perforation radius is evaluated, it is

found that the projectile fails to perforate the plate. The results of such a

decrease in projectile mass (or increase in plate thickness) are shown in fig-

ure I0 for the aluminum plate. Again, figures lO(a) and 10(c) show results

obtained by neglecting yield strength whereas figures 10(b) and 10(d) show

results obtained by including yield strength.

Note that the solution including yield strength possesses both a visco-

plastic region and a rigid region, whereas for K = 0_ the rigid region has

retreated to infinity. Also note that when the yield strength is neglected,

the velocity at _ = i approaches a limit as time increases but does not drop

to zero. However, when the yield strength is included (see fig. 10(b)), the

velocity drops to zero for all _ and the material is considered rigid every-

where and successfully stops the projectile. The displacements at this point

(fig. 10(d)) indicate a definite bulge. The effects of yield strength in

general again indicate much greater velocity decreases and much smaller dis-

placements than when the yield strength is neglected.
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Figure ll.- Shear stress as a function of radius at time of perforation

= 0.25 for K = 0 and K = 0.351. h = 0.25 inch (0.635 cm)_

M 1 = 3.56 X lO -6 slug (51.95 rag); # = 100 slug (0.4788 Ns _;
ft - s e c cm2J

m) slug(cm_)go = 3,940 fps (1,201 _ ; O = 5.2 _ 2.68 g ; k = lO0, O00 psi

kN _ a
<68.95 c-_m-2)• = 0.04688 inch (0.i19 cm).
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Stresses

When the radial distribution of shear stresses present in the plate after

impact are computed from the analysis with and without yield strength, it is

obvious from equation (2b) that they will differ. In fact, the variance at the

time and radius of perforation is approximately 2 to i. In figure ii is shown

a distribution of shear stress computed at the dimensionless time of t = 0.25

(calculated separation times are actually _ = 0.24 for K = 0 and _ = 0.23

for K _ O) for a 1/4 inch (0.635 cm) aluminum plate. The initial projectile

velocity was taken to be 3,940 fps (1,201 m/s) and the radius of perforation at

separation is indicated by the dashed lines in figure ii. As can be seen from

figure ii, the shearing stresses occurring at the radius of perforation computed

by use of the two different solutions differ by a ratio of about 2 to i.

CONCLUDING R_ARKS

It has been shown in the present paper that the inclusion of target-

material yield strength in a one-dimensional analysis of hypervelocity impact

perforations has produced little effect on the resulting perforation radii.

The variation in calculated perforation radii as compared with the solution

neglecting target yield strength amounts to only 5 percent. This percent dif-

ference in calculated perforation radii remains at the negligible 5-percent

level even with variations in the pertinent parameters such as plate (or target)

thickness, projectile mass, and initial velocity. With variations in the

dynamic coefficient of viscosity, the difference does increase to perhaps

i0 percent but the variations in perforation radius due to differences in the

assumed value of the viscosity coefficient alone are much greater than the

i0 percent present when yield strength is neglected. In fact, the determina-

tion of accurate values for the dynamic coefficient of viscosity is much more

critical in the calculation of perforation radii than is the inclusion of the

target yield strength.

In the determination of the minimum thickness of plate necessary for pre-

vention of perforation, however, the effect of yield strength may be important

depending on the initial velocity and mass of the projectile, and the present

analysis containing yield strength should be applied. Furthermore, parametric

studies in which not only the initial projectile velocity is varied but also the

thickness of the plate and the mass of the projectile could provide pertinent

data as to minimum thicknesses of target material needed to prevent perforations.

The velocities, displacements, and stresses can be markedly different in

the resulting calculations for hypervelocity impact depending upon whether

target yield strength has been included in the analysis or not. The effects

of yield strength in general are to produce much greater velocity decreases

and much smaller displacements than those obtained when the yield strength

is neglected. In fact, for the particular case where the projectiles do not

perforate the target plate, the analysis including yield strength indicates

that the velocity drops to zero and the plate is deformed, whereas if the yield
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strength is neglected, the velocity only approaches a limiting value, which is

not zero. Thus, for this particular case, the velocities, displacements, and

stresses calculated by using the simplified solution may be grossly in error.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., September 30, 1964.
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APPENDIX

GOVERNING EQUATION OF SHEAR PERFORATION

An analytical solution is presented for the governing linear differential

equation and its associated boundary conditions. In a mariner similar to that

employed by Chou in reference 3, the governing partial differential equation is

reduced to a total differential equation by use of Laplace transform techniques.

To obtain a particular solution to the resulting total differential equation, a

further change in variables becomes necessary. After satisfying the associated

boundary conditions, a "short time" solution is determined by employing asymp-

totic approximations in the transformed state.

The governing linear differential equation of motion in the axial direc-

tion, for simple shear perforation, as derived in the text (see eq. (3)) can be

written as

____ + 1 8V 1 8V 1 k
8r 2 _ _-_ - V _ = ?

(A1)

Transforming equation (AI) with respect to t by use of Laplace transform

techniques results in

dr 2 r r _s
(A2)

where s

(eq.(411

Let

is the transform parameter. By use of the initial condition

V(O,r) = 0 at t = O, r > a, equation (A2) is reduced to

d2V+ i _V _ _ I k (A_)
dr 2 r dr W r _s

Hence

iz
r = --- (A4)

dV" dV--i_ (AS)_=_
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d_V= d2Vs (A6)
dr 2 dz 2 v

and by substitution of these relations into equation (A3) there results

dz 2 z dz _ _sz

(A7)

The homogeneous solution for V(z) can be written directly as

_H(Z) = AJ0(z) + BYo(z) (A8)

For the particular solution to equation (A7) the Struve function of zero order

is satisfactory. A known relation for the Struve function of order p is

(see ref. 7_ P. 211)

d2Sp(z) i dSp(z) ll P_)+ + - Sp(z) =
dz 2 z dz

(A9)

Let p = 0; then

d2So (z) 1 dSo (z) 2
+ --+ So(z) =-- (Azo)

dz 2 z dz z_

Hence, the particular solution to equation (A7) for V(z) can be written as

=_ ,__.A.___ o(z)
qp(Z) 2_vS-

and the general solution becomes

(ALl)

V'(z) = V'H(Z) + V'p(Z) = AJo(z ) + BYo(z )

or resubstituting for z from equation (A4)

(AI2)

V(r,s) =AJo(ir _vs--) + BYo(ir _vs-) (A_3)
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APPENDIX

In order to apply the (transformed) boundary condition given by equa-

tion (8), namely, _ = 0 as r _ _, one must consider the asymptotic behavior

of the solution as given by equation (AI3) for Irl >> i. The asymptotic

approximation for the Struve function of order zero as found in equation (136a)

of reference 8 is

So(Jr _ws-)_ YO( ir _ws-)+
2 (A14)

and since a known identity between the Bessel functions is (see eq. (ll0) of

ref. 8)

K0(r _ws-) = 2i_0( r _ws-) + iY0(ir _ws-)_
(AiS)

then

S0(ir _ws-) _ iI0(r _ws-) - _K0(r _vs-) +

Kence, for Irl >> i, the general solution can be written as

_(r,s) _AI0(r _vS-)+BIiI0(r _vS-)- _2-K0(r _ws-)_

+ _k I Ir _s O_r s2

Application of the transformed boundary condition G = 0 as r _

eq. (8)) yields the relation

see

(AI6)

(AI7)

A =-Bi-- _k

2t/ s
(A18)

since K0 -_ 0 and I0 _ _ as r -_ _. Use of the known identities between

Ko(r _vs-) (eq. (AIS)), S0(ir _vs-) (eq. (AI4))_ Io(r _vS--)_and Y0(ir _)

reduces the general solution to

(AI9)
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Application of the (transformed) boundary condition (see eq. (7)_ note also

sV - _dV + k (r t > O) (A20)
dr _ = v° = a,

permits the evaluation of the quantity B.

equation (A20) and use of equation (140a)

expression for B:

Substitution of equation (AI9) into

of reference 8 yield the following

B =

-V°- _---_--k--I0{a2_s_ \ $)-SO( ia 'v/21/'_----_'_--+J__'_'sllIa _vS--)- _L_'_k_-2- Sl<l a _vsl

(A2i)

Hence_ the general solution can be written as

_(r, s) =

_ xk _ {r _ws_)_ S0<ir [s_ _ik
(A22)

A "short time" solution is now determined from the general solution by

a_> 1. By reference again to equation (136a) of reference 8, itassuming

can be shown that

SI a _ YI a + x xa 2 s
V

A known identity between the modified Bessel function of the second kindf_f

order one K1 and the Hankel function of the first kind of order one H

(see eqs. (llS) and (70) of ref. 8)

(A23)

is

(A24)

32



Hence

and since

then, from equation (A25)

Thus

APPENDIX

ll(a_wS--) =-iJiIia_vS-- )

Ii <a _ws-)=-YI lia _ws--) 2_K/+

2 2i+
v

(A25)

(A26)

(A27)

(A28)

2
Substitution of the asymptotic expressions for SO and _ - SI

general solution (eq. (A22)) and making use of the identity for YO

yield

into the

(eq. (A15)1

ap--[-_ + _ K0
V(r, s) = k (A29)

sKo(a_)+_ _-Kiia _) _s2r

Note that for increased accuracy in equation (A29), it is only necessary

to increase the number of terms taken in the asymptotic expansions of S O and

SI; of course, the semiconvergent nature of the asymptotic expansions must be

considered. These additional terms are polynomials and would not present any

new difficulties. To aid in determining the inverse transform of equa-

tion (A29), the following asymptotic expansions of the modified Bessel func-

tions KO, K I are employed (see eq. (ll4) of ref. 8)

¢9
+ . • .I

128z 2 /

_l(z)= 2_z-z(z+ 3 15 + . . .]

8z 128z 2 J

(A30)
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Substitution of the asymptotic expansions given in equation (A30) into equa-

tion (A29) yields after algebraic manipulation:

r-a)[_ + i {k___ a - r_ i

ta2 - 2ar - 7r2 + _i_ a - 5r + _2 I_ ) 1 .] k (A31)+ 128a2r 2 Jw 8ra _ +_ ps2r

and by application of standard transform tables (ref. 9, P. 380, formulas (ii))

becomes

CV(r,t) = V o rfc r - a +
2_ _r

____L_2 _------ierfc r - a
v/ a 2_

a2 - 2ar - 7r 2+ 128r 2 a - 5r _2 _2a2h4vti2erfcr - a . .+ _a 8r + v-_/a --_- 2_"

IP-a )Ia)i/214 r- a /r - a
+ k i _ _ ti2erfc __ +

2 _ 8r
_) _-_(4t)3/2i3erfc r -a2_

a - 2ar - 7 r2 + _._a a - 5r _2 1_2a2_16vt2i4erfc r - a+ --128r 2 8r +

+ t kl_ {a_l/2 _16t2i4erfc r - a

pa 2 \r/ L 2 _ Ir8_r a _w_) aJ_(
+ 4t)5/2i5erfc r - a

9a 2 - 2ar - 7r2128r 2
+ _._a a - 5r _2 _2a2___6_ 4t3i6erfc r - a • •

8r + w2 /a _ 2_ J

kt

pr

_r - a) _ 0) (A32)

where the symbol in denotes the nth integral of the complementary error

function.
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Equation (A32) can now be nondimensionalized as follows:

Let

a

H = _ = 2_a2hp
M

(A33)

Hence 3 the nondimensional velocity can be written as

f

V 1 le F - 1 4K(I H)_i2erfc _ - 1 _"- 1

M

I+ RI i erfc 7 - i + 8K(I - H)_3/2i3erfc T - i + 32KHt-5/2iPerfc

2_ 2_

+ R2 _-_4rro_ -___A+ _6K(_- H)_4errc_--___!+ 64_-}_G_ro-2_-__j....

where

=i i H
Rl 8 87

H i H 2
128r-_2 64_ 128 + +

By comparison of equations (A31) and (A32), it can be shown that s is related

to 1/4t and that a s_v > i implies _ < 1/4. Nevertheless, calculations

indicate that the three-term asymptotic series presented in equation (A30) are
I

only approximately lO to 15 percent in error for _ = 1/2 (and a s_w = 1/_)$asl_
Therefore, results are presented in this paper for values of _ as high

Results for _ > 1/2 should be viewed with increasing skepticism. Differentia-

tion of equation (A34) with respect to _ yields the nondimensional shear
strain rate
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where

_V a

_r V o

---- = _A l___e_ 4t + R3 erfc ___+_-i 2_4 - K(I - H)]i erfc _-2_i

+ 4[[R5 + K(I - H)R_i2erfc ? - 1 + 8(t_5/2_( 1 _ H)R4 _ K}{]i5 erfc --

+ 16_[m% + K(_-mR_%_fo _ -___!

+ 64_'SKHRsi6erfcF - i . ._ + Kt-

2_f j

+ 52(t_5/2Kl_R4i5erf c _ - 1

((_- _) _->o)

3 1

R}= 8F 8 +H

(A35)

R4=
128_ 64_ 128 8_ j

RS= 45 + 3 25--_ H(r r_) ]_2256_ 3 12---_ + + _ - - _

By integration of equation (A35) with respect to t--,the nondimensional shear
strain is obtained

8w w = 4__{ 1 i erfc _ - 1 _- 1 9_4 K(1 - H)_i3erfc _ - 18r Voa @ 2_ + R3i2erfc 2_ + - 2_

+ 4_5 + K(1 - H)R3]i4erfc _ - 1 + 8(_)3/2[K(1 _ H)R4 _ K_]i5erfc _- 1

+ 16t--2_3 + K(1 - H)R_i6erfc _ - 1

+ 64[_em_iSerfo _ -i..._ + Kt-_
j

--+ 32(K)5/RKHR4i7erfc _ - 1

((_- z) _ o) (A_)
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A second integration with respect to _ would determine the corresponding dis-

placement. However_ a simpler approach is to integrate the nondimensional

velocity with respect to t to obtain the nondimensional displacement

F
wv__F__= 4_ _i2erfc _ -______i+ 4K(I - H)_i4erfc _ -____I+ 16KHt-_2i6erfcT - I

a2Vo <

+ R1 gi3erfe _- 1 + 81((1 - H)(Y)3/2iSerfc _ -_____i+ 32KH([)5/2i7erfe

[4 _ - 1 16K(I - H)t--2i6erfe7--_l + 64KHt-3iSerfc 7 - 1 } Kt-_+ R2 _i4erfc 2_ + 2_ _I" " - _

- =>o) (A37)

The symbol inerfc x represents the repeated nth integrals of the complementary

error function erfc

in which

£inerfc x = in-lerfc { d{

iOerfc x = erfc x

(A_)

i-lerfc x = 2-_e-x2

and x(_) is the argument of the complementary error function. A recurrence

relation useful in determining the repeated integrals of the complementary error

function is (see refs. 8 and 9)

inerfc x = in-2erfc x - 2zin-lerfc X (A39)
2n

A table of the error function and its derivatives and integrals for values of

the argument between 0 and 3.0 is presented in reference 9 from values given in

reference i0. A similar table has been included in this paper, with slight

extensions, for convenience in computing these expressions. (See table II.) A

table of the first ii repeated integrals of the error function with values of

the argument between 0 and 2.80 is also available. (See ref. Ii.)
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TABLE II.- FIRST EIGHT REPEATED INTEGRALS OF THE COMPL_Y ERROR FUNCTION

x err' x

0.00 1.12837910

•05 1.12556170

.i0 1.11715160

•151 1.10327410

.20 i 1.08419470
•25! 1.06001410

.3O 1.05126090

• 35 .99828371

• 40 .9615413O

.451 .92153201

• 50 I •87878298

• 55 .8358_665

.60 .78724343

•65 .75954676

•70 .69127486

•75 .64293107

.80 •59498579

•85 .54786972

•90 .50196857

•95 .45761925

i.O0 .41510750

l.lO •39647960

1.20 .2673A435

1.30 .20820799

1.40 .15894171

1•50 .11893029

1•60 .08722906

1.70 .06271104

1.80 .04419172

1.90 .03052474

2.00 .02066699

2.10 .01371565

2.20 .00892216

2.30 •00568902

2.40 •00355565

2•50 •00217828

2.60 .00130805

2.70 •00076992

2.80 .00044421

2.90 .00025121

5.00 •00013925

erfc x

i. 00000000

•94_62802
•88799708

•85200403
•77729741

•72367361

.67137924

•62061795

•57160769

•52451828

•47950012

•43667663

• 39614391

• 35797067

•32219881
• 28884566

• 25789904

•22993194

•20 999179

•17910919

•15729921

•11979495

• 08968602
• 06599206

•04771488

•O3589485

.02369162

.01620954

•O1O9O95O

•O072O957

•0O467774

•00297947

•00186285

•00114318

.OOO68851

•0004o695

•ooo2 ]6o

.ooom_33

•oooo75o1
•0oo04110

•00002209

i erfc x

0.56418955

.51559945

.46982210

.42685645

•3866o787

• 349o8865

• 3142i848

.28192557

•25212759

.22273278

.19964123

•17674618

.15593537

.13709245

.12OO9827

i2erfc x i�erfc x

0.25000000 0.09403159

.22301702 .08221629

•19839317 •07169057

•17598827 •06233999

•15566957 •05405707

•13728232 .04674124

.12071054 .04029869

•10581751 .03A64221

.09247640 .02969107

•08056470 .02537075

.06996473 .02161275

.O6O56396 .01855430

•O5225536 .O1553815

•04493762 ,01311225

.0585153O .01102947

i4erfc x

O.031250O0

.02684942

.02300688

.01966078

•01675509

.01425896

•01206641

.01019599

.oo859o4_

.00721637

.00604399

.00504677

•00420119

.OO348646

.00288425

i5erfc x

0.00940315

•00795313

•00670892

•00564417

,00473550

.00396217

.0033o588

•00275050

•00228187

•00188760

•00155687

.00128028

.00104967

.00085798

.00069915

i6erfc x

0.00260416

.00217117

.00180542

.00149729

.00123840
.00102i48
.00O84024

.00068922

.0005697!_

.00045979

.00037992

.OO03,032O
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